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Abstract Propagation of plane harmonic thermoelastic diffusive waves in a homo-
geneous, transversely isotropic, thin elastic layer of finite width is studied, in the
context of the theory of coupled thermoelastic diffusion. According to the character-
istic equation, three quasi-longitudinal waves, namely, quasi-elastodiffusive (QED)
mode, quasi-mass diffusion (QMD) mode, and quasi-thermodiffusive (QTD) mode
can propagate in addition to quasi-transverse waves (QSV) mode and the purely quasi-
transverse motion (QSH) mode, which is not affected by thermal and diffusion vibra-
tions, gets decoupled from the rest of the motion of wave propagation. The secular
equations corresponding to the symmetric and skew symmetric modes of the layer are
derived. The amplitudes of displacements, temperature change, and concentration for
symmetric and skew symmetric modes of vibration of the layer are computed numer-
ically. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient,
and amplitudes of displacements, temperature change, and concentration are presented
graphically in order to illustrate and compare the results analytically. Some special
cases of the frequency equation are also deduced and compared with the existing
results.
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1 Introduction

Thermoelasticity deals with the study of thermodynamic systems of bodies in equi-
librium, whose interaction with the surroundings is limited to mechanical work, heat
exchange, and external work. In general, a change of the body temperature is caused
not only by external and internal heat sources, but also by the process of deformation
itself. Under normal conditions of heat exchange, the flux produced by the deforma-
tion gives rise to unsteady heating. In classical theory, this change of temperature is
very small. The corresponding terms in the field equations, inertia terms in the elastic
equations of motion, and coupling term in the heat conduction equation are neglected,
and the problem is treated as quasi-static. However, this is not true if the temperature
undergoes a large and sudden change such as sudden heating or cooling of a body. In
such cases, the inertia term must be considered in the equations of motion.

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of this
theory does not contain an elastic term; second, the heat conduction equation is of a
parabolic type, predicting infinite speeds of propagation for heat waves.

The theory of coupling of thermal and strain fields gives rise to the coupled theory
of thermoelasticity and was first postulated by Duhamel [1] shortly after the formation
of the theory of elasticity. He derived the equations for the distribution of strains in
an elastic medium subjected to a temperature gradient and introduced the dilatation
term in the heat conduction equation, but this equation was not on a thermodynamic
basis. Neuman [2], Voigt [3], and Jeffreys [4] made attempts at thermodynamical
justification of the equations of Duhamel’s theory and solved a number of interesting
problems. The work of Biot [5] gave a satisfactory derivation of the heat conduction
equation, which includes the dilatation term based on thermodynamics of irreversible
processes.

Diffusion can be defined as the random walk of an assembly of particles from regions
of high concentration to those of low concentration. Nowadays, there is a great deal
of interest in the study of this phenomenon due to its application in geophysics and
the electronics industry. In integrated circuit fabrication, diffusion is used to introduce
“dopants” in controlled amounts into the semiconductor substance. In particular, diffu-
sion is used to form the base and emitter in bipolar transistors, integrated resistors, and
the source/drain regions in metal oxide semiconductor (MOS) transistors and doped
poly-silicon gates in MOS transistors. In most of the applications, the concentration
is calculated using what is known as Fick’s law. This is a simple law which does not
take into consideration the mutual interaction between the introduced substance and
the medium into which it is introduced or the effect of temperature on this interaction.
The study of the phenomenon of diffusion is used to improve the conditions of oil
extraction (seeking ways of more efficiently recovering oil from oil deposits). These
days, oil companies are interested in the process of thermodiffusion for more efficient
extraction of oil from oil deposits.

Until recently, thermodiffusion in solids, especially in metals, was considered as
a quantity that is independent of body deformation. Practice, however, indicates that
the process of thermodiffusion could have a very considerable influence upon the
deformation of the body.
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The thermodiffusion in elastic solids is due to the coupling of fields of temperature,
mass diffusion, and that of strain in addition to heat and mass exchange with an
environment. Nowacki [6-9] developed the theory of thermoelastic diffusion by using a
coupled thermoelastic model. Dudziak and Kowalski [10] and Olesiak and Pyryev [11],
respectively, discussed the theory of thermodiffusion and coupled quasi-stationary
problems of thermal diffusion for an elastic layer. They studied the influence of cross
effects arising from the coupling of the fields of temperature, mass diffusion, and
strain due to which the thermal excitation results in additional mass concentration
and which generates additional fields of temperature. Sherief etal. [12] developed the
generalized theory of thermoelastic diffusion with one relaxation time, which allows
finite speeds of propagation of waves. Aouadi [13—17] investigated different types of
problems in thrmoelastic diffusion. Sharma etal. [18,19] discussed plane harmonic
generalized thermoelastic diffusive waves and elasto-thermodiffusive surface waves
in heat conducting solids.

Sharma [20] discussed the propagation of thermoelastic waves in homogeneous
isotropic plates. Sharma and Pathania [21,22] investigated the generalized thermoel-
stic Lamb waves in a plate with layers of an inviscid liquid. Sharma and Pathania
[23] discussed the generalized thermoelstic waves in anisotropic plates sandwiched
between liquid layers.

The present investigation is concerned with the propagation of waves in a homo-
geneous, transversely isotropic (TI), coupled thermoelastic diffusive layer. The phase
velocities and attenuation coefficients of various possible modes of wave propagation
have been computed using the irreducible case of Cardano’s method with the help of
DeMoivre’s theorem from the secular equations. The analytical results have also been
computed numerically and represented graphically for illustration of various physical
phenomena exhibited by such solids.

2 Basic Equations

The basic governing equations for an anisotropic, coupled thermoelastic difffusive
solid in the absence of body forces, heat sources, and diffusive mass sources are given
by

0ij = Cijkmeim + aijT + b;;C, (D
qi = —Ki;T;j, (2)
n = —oPj, 3)
pSTy = pCrT + aTyC — ajjei; To, (4)
P = bymerm + bC —aT. 5)

Here ¢ijim(Cijkm = Ckmij = Cjikm = Cijmk) are elastic parameters. a;; (= aj;), b;;
(= bj;) are tensors of thermal and diffusion moduli, respectively. p, Cg are, respec-
tively, the density and specific heat at constant strain; a, b are, respectively, coefficients
describing the measure of thermoelastic diffusion effects and of diffusion effects, and
Tj is the reference temperature assumed to be such that |7/ Ty| «1. T (x1, x2, X3, )
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is the temperature change, and C is the concentration. 0;; (= 0};), K;j(= K;), ejj =
(u;, j+uj,;)/2 are components of stress, thermal conductivity, and strain tensor, respec-
tively. o:;‘j (=« ;‘ ;) are diffusion parameters. P, S are the chemical potential and entropy
per unit mass, respectively, and ¢, 7j denote the heat flux vector and flow of diffusion
mass vector, respectively. The symbols “,” and “.” correspond to partial and time
derivatives, respectively.

The equation of motion, entropy equation, and the equation of conservation of mass
are, respectively,

oij,j + pFi = piij, (6)
gii +pToS — pM + Pn;; =0, 7N
nii =C +pN, (3)

where F; is the external force per unit mass, M, N are the strengths of heat and mass
diffusion source per unit mass, and u; is the displacement vector.
Using Egs. 1-5 in Egs. 6-8 without body, heat, and diffusive mass forces, we obtain
the equations of motion,
Cijkmekm,j + aij T j + bijC j = pii;, (C))
the equation of heat conduction,
pCET +aToC — a;;éi To = Ki;Tij, (10)
and the equation of mass diffusion,
— afibkmerm.ij — o;bCij + f;aTij = —C. (11)
Applying the transformation,

xX] =x1cosp +xxsing, xp = —x;sing +xpco8¢, x5 =x3, (12)

where ¢ is the angle of rotation in the x1—x> plane, in Egs.9-11, the basic equations
for a homogeneous, TI, coupled thermodifffusive elastic solid are

criy, 11 + ciau2 21 + c13u3,31 + cop(U1,22 + u2,12)

tcaa(ur 33 +uz13) —arT — biCy = piiy, (13)
ce6 (1,21 + u2,11) + crouy 12 + cr1u2,22 + c44u2 33 + (€13
+eaa)uz 3o —a1To — b1 C o = piis, (14)
(c13 + caa)(uy,13 + u2,23) + ca4(u3 11 + u322)
+e33uz 33 —a3T3 — b3C 3 = piiz, (15)
pCET +aToC + [ar (it,1 + i2,2) + azit3 31T = K1(T 11 + T22) + K37 33,
(16)
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o [b1(ui 11 + w2200 + uz 211 + ui,122) + b3(u3 311 + u3,322)]
+o3[by (u1,133 + u2,233) + b3uz 3331 — aib(C 11 + C 22)
—(x;‘bC,33 + OZTCZ(T,U +Ta)+ a§aT33 =—-C, (17

where

aij = —aiij, bij = —bidij, o =asij, Kij = K;djj,
a; = (c11 + cp)ay + c1303,  az = 2c1301 + €333, (18)
by = (c11 + c2)aie + c13a3e, bz = 2c1301c + 33003,

ce6 = (c11 — c12)/2.

Here o, a;. are the coefficients of linear thermal expansion and diffusion expansion,
respectively.

In the above Eqgs. 13—17, we use the contracting subscript notations 1 — 11,2 —
22,3 — 33,4 — 23,5 — 13,6 — 12 to relate ¢;jgm t0 ¢in(i, j, k,m =1,2,3 and
I,n=1,2,3,4,5,0).

3 Formulation of the Problem

We consider a homogeneous, TI, coupled thermodiffusive elastic layer of thick-
ness 2H, initially at a uniform temperature 7p. The origin of the coordinate system
(x1, x2, x3) is taken on the middle surface of the layer. The x1—x> plane is chosen to
coincide with the middle surface with the x3-axis normal to it along the thickness. The
surfaces x3 = £ H are subjected to different boundary conditions. We assume that the
solutions are explicitly independent of x,, but an implicit dependence is there so that
the component u; of displacement is non-vanishing. Therefore, Eqs. 13—17 reduce to

criut 11 + caquy 33 + (€13 + cag)uz ;3 — a1 Ty — b1 C 1 = piiy, (19)
co6tt2,11 + caqun33 — a1 To — b1 C o = piis, (20)
(c13 + caq)ur,13 + caguz 11 + c33u3 33 — asT3 — b3C 3 = piis, (21)
pCET +aToC + [ariiy 1 + aziz 31Ty = K1 T11 + K37 33, (22)
of (brur 111 + b3us 311) + a3 (brui 133 + b3usz 333) — abC 11

—a3bC 33 +ajal 1 +a3aT 33 = —C. (23)

We define the dimensionless quantities,

wix, wiu
=00 =l wp= 0 T =4 = DS
1 V1 1 V] pvl pvl (24)
pl =P p_uh / _ Oij V2= S — pCev}
— by - wT’ ij a1 Ty’ 1= p> 1= K

Here w] is the characteristic frequency of the medium and vy is the longitudinal wave
velocity in the medium.

@ Springer



Int J Thermophys (2009) 30:710-733

715

Upon introducing the quantities in Eq.24 in Eqgs. 19-24, after suppressing the

primes, we obtain

ur11 +8u133 +duz 13— 71— C 1 =iip, (25)
83up, 11 + S1u2 33 = iia, (26)
Souy,13 + S1uz 11 + 84u3z 33 — p1T3 — paC3 = iis, 27
T+ 0CH+ oG + pruz3) =T + p3T 33, (28)
giurinn +qrui133 +qiu3 333 +qgus s + 3T +q5T33
—q45C 11 —qgC33 = —C, (29)
where
C44 c13 + caq c11 —C12 €33 az b3
fi=—, h=———, H=——", S4=—, p1=—, —,
11 11 2cn 11 a by
K; ; aTov%al a%To . oﬁl"wfb% . o3wibib3
p3 = _7 1 = —9 2 - b e 9 q - —7
K wi Kb pKiw} ! pv} 2 oV
afwibia aXwibia afwib aXwrb
1w 1 1Wi 1
G=— = ai = =
apvj ajvj Vi vy
o _eawibt . afwibibs
q7 = 4 0 48 =1 -
PV PV
4 Solution of the Problem
We assume solutions of the form,
(ur,uz,u3, T,C) = (1, V, W, S, R) exp[i§(x; sin0 + mx3 — ct)], (30)

w

where ¢ = F is the dimensionless phase velocity, w is the frequency, and & is the
wave number. Here 6 is the angle of inclination of the wave normal with the axis
of symmetry (x3-axis); m is still an unknown parameter. 1, V, W, S, R are, respec-
tively, the amplitude ratios of displacements u1, uz, u3, temperature change 7', and

concentration C with respect to u1.
Upon using solutions of Eq.30 in Egs. 25-29, we obtain

Ez(s2 + m281 — c2) + 5282smW + 1£sS+1EsR =0,

(835% + 8ym> — AV =0,

E2smdy + E2(815% 4 Sam® — D)W + 1p1EmS + iprEmR = 0,

WESE + proEmOW + (E%s% + p3gim® —1w)S — 1w R =0,

E7s(q7s” + gym®) + 182 m(gss” + GsmPW + E(qis” + qim®)S
—E(q;‘s2 + qé‘m2)R = —IcR,

where s = sin 6.

(3D
(32)
(33)
(34)

(35)
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Equation 32 corresponds to the purely quasi-transverse wave mode (QSH) mode
that decouples from the rest of the motion and is not affected by thermal and diffu-
sion vibrations. The system of Eqs.31 and 33-35 have a non-trivial solution if the
determinant of the coefficients [1, W, S, R]™" vanishes, which yields the following
polynomial characteristic equation,

md® + A*mb + B*m* + C*m* + D* = 0. (36)

The coefficients A*, B*, C*, D* are given in Appendix A. The characteristic Eq. 36 is
biquadratic in m? and hence possesses four roots m%, p = 1,2,3,4. Corresponding
to these four roots, there exists three type of quasi-longitudinal waves and one quasi-
transverse wave. The formal expressions for displacements, temperature change, and
concentration can be written as

4
ur =Y (Apcosémyxs + B, sin&m,x3) expli& (x; sin0 — c1)], (37)
p=1
4
Uz = anp(A,, cosEmpxz + Bpsinémpxz) explté (xy siné —ct)],  (38)
p=1

4
T = nap(Apcosémpxs + By sin&mpxz) explié (x1 sinf — cn)],  (39)
p=1

4
C = Zn3,,(A,, cosémpxz + Bpsinémpxz) exp[t§(xy sind — ct)],  (40)
p=1

where A, B, p = 1,2, 3, 4 are arbitrary constants. The coupling constants ny, n2p,
n3p, p = 1,2, 3, 4 are given in Appendix B.

5 Boundary Conditions

The dimensionless boundary conditions at the interface x3 = +H of the layer are
given by

(i) Mechanical conditions (stress-free surface)

033 = (62 — du1,1 +84u33 — (p1T + p2C) =0,
031 = 61(u3,1 +uy3) =0, 41)

(i1) Thermal conditions
Ts+hT =0, (42)

where £ is the surface heat transfer coefficient. Here 7 — 0 corresponds to
thermally insulated boundaries and 1 — oo refers to isothermal surfaces.
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(iii)) Chemical potential

P=ui1+ puzz—nC+mT =0, (43)
where
aciy bey
np=-— ny=-—5
aib b?

6 Derivations of the Secular Equations

Substituting the values of u 1, u3, T, and C from Eqs. 37—40 in the boundary conditions
of Eqs.41-43 at the surface x3 = £H, we obtain a system of eight simultaneous
equations, and for a non-trivial solution of a system of equations, the determinant
of the coefficients of amplitudes vanishes. This, after lengthy algebraic reductions,
leads to the secular equations for the plate with stress-free thermally insulated and
isothermal boundaries as

b + Ty * L * Ty * Ty +
R¥| = R+ RY| = Ri| = Ri| —= Rf|—=| =0,
: [Ts] TR S[TJ T T RS NT; 7% T

for stress-free insulated boundaries 7 — 0 of the layer,
you ki yruli vu ki Ty T yyu ki
P = P+ P = P = Pl == P = =0,
! [TJ ERERRE |:T3:| i Iy M VL 5% T

for stress-free isothermal boundaries 4 — oo of the layer, where
T, =taném,H(p=1,2,3,4)
and

R = mima[(n11n2n — naini2)(Panis — Panis)l,
R5 = mim3[(n11n23 — naini3)(Paniy — Panyg)l,
Ry = mymy[(n11n24 — na1n14)(Pani3 — P3np)l,
R} = mam3[(n12n23 — npni3)(Pinis — Paniy)l,
RS = mamy[(npan14 — niznza)(Piniz — Pangp)],
Rg = m3my[(n13n24 — no3nia) (Pinia — Pangy)l,
Pl = myma[(n12 — n11)(P3nag — Pan3)],

Py = mim3[(n11 — n13)(Panag — P4nan)l,

@ Springer



718 Int J Thermophys (2009) 30:710-733

P = mima[(n14 — n11)(Panaz — P3na)l,

P = mom3[(n13 — n12)(Pinas — Panay)l,
P = mama[(n12 — ni14)(Pina3 — P3nap)],

Py = m3ma[(n14 — n13)(Pinan — Panay)],
Py =1£(82 — 81) — pin2p — p2n3p, p=1,2,3,4.

Here, superscript 41 refers to skew symmetric and —1 refers to symmetric modes of
wave propagation.
7 Non-heat Conducting Solids

If the solids are not capable of conducting heat (K, K» — 0), then Eq.22 gives

] alu +a§u .

Using Eq.46 in Eqs. 19-21 and 23 and with the aid of Eq. 24, we obtain

eput,11 + 81u1,33 + exuz 13 + €Cq =iy, 47
83un,11 + S1u2,33 = ii2, (48)
eku1,13 + 81Uz 11 + ez 33 + 6,C 3 = i3, (49)

Ryuy 111 + hhuy 133 + hus 311 + hyus 333 + hsCqp + hgCaz +C =0,  (50)

where
2
aiTo ajazTy aa1 Ty
p2CEuv} 2Cpv} pCEbi
2
as Ty aazTy afaarbi Ty
8m=84+ﬁ n b_s h/lz ik_ ]2 4
p=CEv; pCeby p*CEv)
, N a3aa1b1T0 , * Olikaa3b1T() , " a3aa3b1T0
hy=q7 — =573 M=~ = —"F5"——7,
p*CEgvj p=CEgvj p*CEgv]

a*aw* Ty ata?w* Ty
he = — ¥ 17 ey , he = — * 4+ ; .
5 (95 p2Crv? 5 96 P2Cpv?

The frequency equation corresponding to this case is

T T
WHT)T + WET T + w;‘[T—%ﬁ + X2
1

VK]
T X321 +X5=0, (51
T1] + 2[T2] + X3 (5D
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where

Wi =miny(Yaniz — Yangp), Wi =monpp(Yang — Yings),

W5 = mani3(Yiniz — Yaniy),

X{ = Hi(mz —ni), X3 =Hy(nii —niz), X3 = H3(niz —nis),
Y, = LT + Lins,,

arazTy azaTy

Hy =1L — Linsy, Li=8-81+ -, Ly=p+——oi,
p §L; 4N3p 1 ,OQCEU% 2= pCEby
It — _alaTo
’ ,PCeb1

v a~T;
Lj:p—21<b+ 0), p=1.2.34.

by pCE

8 Amplitudes of Displacements, Temperature Change, and Concentration

In this section, the amplitudes of displacements, temperature change, and concentra-
tion for symmetric and skew symmetric cases are given below:

4
((u1)syms (@1)asym)= Z (Apcosémpxs, By sinEmpxz) exp[ié(xy sind — ct)],

p=1
(52)
4
((U3)sym, (U3)asym)= D m1p(Bp sin€m,x3, A cos&m px3) expli€ (x sin6 — cn)l,
p=1
(53)
4
(T)sym> (Tasym) = D, n2p(Ap cosEmpx3, By sin Em px3) expleé (xy sin 6 — c1)],
p=1
(54)
4
(C)sym: (Chasym) = D n3p (A cos&m pxz, By sin&m ,x3) explié (x) sin 0 — ct)].
p=1
(55)

The amplitudes A, By, p =1, 2, 3, 4 are given in Appendix C.

9 Particular Cases

1. In the absence of a diffusion effect, i.e., if we take by = b3 = a = b = 0, Eqgs.44
and 45 yield the frequency equations of a TI-coupled thermoelastic solid as
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T + T +
Sitl=| =S|= S; =0, 56
I[TJ 2[T3] i 0
oi [B] - 0s[ 2] + 050 (57)
1 T3 2 T3 3=

where

St =miny (Van3 = Vanly), S5 = manyy(Vinyz — Vanyy),
S5 = m3nhs(Vin, — Vani)),
0F = mi(Vanhs — Vanhy), Q3 = ma(Vinhs — Vany)),
03 = m3(Viny, — Vany),
B faram’, + (fsrs — frr)m,
T foramb + (fsra + fors — frrm3 + fsrs’

. (f3r2 = rifemy, = rifs
"o = feram$, + (fsra + fors — frro)m3 + fsr3’

Vp = @2 —81) — piny,, p=1,2,3.

n/
Ip

The above results are similar to those obtained by Sharma etal. ([24], Egs. 24
and 28).
2. For the isotropic case, we have

cri=cp3=A+2u, cp=c3=»%, cu=p, a=a3=p,
by =b3=p8, Ki=K,=K, Otikz()l;:D. (58)

Consequently, Eqs.44 and 45 become the frequency equations of an isotropic-
coupled thermoelastic diffusive solid as

7,1+ T, 7,7+ T, 1+ T,
M [é] M+ M [7‘3‘} M [—2} M [—2 4] M [—4} —0,

T1 T T35 T1
(59)
T yu ki Lt oyiubi .t
N | = Ny+N37| — Ni|= NI | — NS | =1 =0,
1[T3] +Ny+ 3[T3} +Ny T +Ns T +Ne T
(60)
where

M} = myma[(myimay — maymy2)(Hamis — Hami3)],
M5 = mim3[(my1ma3 — maymy3)(Hamiz — Hamya)],
M3 = mymg[(m11mog — maymia)(Hamz — Hym )],
M} = mom3[(miamaz — moym13)(Himis — Hamiy)],
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M3 = momy[(mapmis — mipmos)(Hymiz — Hymyy)],
Mg = m3my[(m13mog — mozmis)(Hymip — Hamyy)],
N = mima[(mi2 — m11)(Hysmas — Ham23)],
N5 = mym3[(m11 — m13)(Hymas — Hym)],

N3 = mima[(mi4 —my1)(Hymoz — Hzmp)1,
N; = mom3[(m13 — mi2)(Himos — Hamoy)],

N5 = moma[(m12 — m14)(Himaz — Hymay)],
Ng = m3my[(m14 — m13)(Hiny — Hanop)l,
H, =82 — 61) —map —m3p, p=1,2,34

The coupling constants mg, can be obtained from ngyp,g = 1,2,3 and p =
1, 2, 3, 4 by using the quantities given in Eq. 58.

2.1 Sub-case
In the absence of a diffusion effect, i.e.,a = b = B, = 0, Egs.59 and 60 reduce to
the frequency equations of isotropic-coupled thermoelastic solid as

T + b +
Uf| — —-Us|= Ui =0, 61
I[TJ Z[Ts] M D
7t T
Vil—=—| = V| = V3 =0, 62
I[TJ 2 [T3] ME (©2)

where

U{ = mimy(Lym'5 — Lam',), Uj = momb,(Lim5 — Lzm),),
U3* = mgm/23(L1m/12 — L2m/11)7

V¥ = mi(Lamhy — Lamby), V3 = ma(Limhy — Lymby),

V3* = m3(L1m/22 — Lzmél),

Ly=1@ —6)—mb, p=123

The coupling constants m; » can be obtained from n; 4 =12and p=1,2, 3using

the quantities given in Eq.58.
The above results are similar to those obtained by Sharma etal. ([24], Eq.34).

10 Numerical Results and Discussion

The material chosen for the purpose of numerical calculation is copper which is a
TI material. The physical data for a single crystal of copper material are given below:
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2.6 -
T~
\\ —— TID(E=1°)
244 \\ — — —  — TID(E=307)
T it TID(6=15°)
| — - — - - TIDE=30°)
2.2 1 /l ———~————— ID(0=15%)
| — —a — — ID(6=30%
N - - —© — — — ID(6=15"
27 N — - = - - ID(=307)
| — s TI(6=15%
> ‘ — =V — = TI6=30°
= ] |
g 18 3\ - — = = — = TIe=15
o 1
o Vo — - e— - - TIe=30°)
Q .
o 1.6+
(2]
©
<
o
1.4
1.2
1 -
0.8 -
0.6

0 05 1 1.5 2 25 3 35 4 45 5 55
Wave number

Fig. 1 Variations of phase velocity with respect to wave number (symmetric)

¢ =18.78 x 1019 kg-m~!-s2, ¢, =876 x 101%kg - m~! -2,
c3 =80x100kg-m™' -2
c33 = 18.2 x 1010 kg - m~! -sz, c44 = 5.06 x 1010 kg - m~! -sz,

To = 0.293 x 10° K
Crp=06331x10°T- kg7! K" a; =298 x 1075 K™,

a3 =24 x 1070 KL,
ape =21 x107%m? - kg7! a3, =25 x 1074 m? - kg7!,
a=24x 104m2-s*2~K*1,
b=132x10kg-m>-s72, 01" =0.95 x 10 ¥ kg-m™> -5,
a3* =0.90 x 1078 kg - m™3 -5,
p=8954x10°kg-m™>, K; =0433x10°W.-m~'- K™},
Kz =0.450 x 10° W.-m~! . K1,

10.1 Phase Velocity and Attenuation Coefficient

The variations of phase velocity for thermoelastic diffusive waves for first and second
modes have been plotted in Figs. 1 and 2 for various modes of propagation with respect
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Fig. 2 Variations of phase velocity with respect to wave number (skew-symmetric)

to wave number for skew symmetric and symmetric modes. In Figs. 1,2, 3 and 4, the
solid line and big dashed line correspond to the first mode for the case of a TI ther-
moelastic diffusive solid (TID) for 6 = 15° and 8 = 30°, respectively. Similarly, the
small dashed line and line with dots correspond to the second mode for the case of TID
for & = 15° and 6 = 30°, respectively. The star, triangle, circle, and square symbols
on these four lines correspond to an isotropic thermoelastic (ID) diffusive solid for the
first and second modes, respectively. Similarly, the left triangle, lower triangle, right
triangle, and diamond symbols correspond to a TI thermoelastic solid for the first and
second modes, respectively.

From Fig. 1, it is noticed that corresponding to the case of TID, the values of the
phase velocity increase slowly before remaining constant for the first mode and for
0 = 15°. For 0 = 30°, the phase velocity decreases slowly before showing a constant
behavior. The values of the phase velocity increase with the variation of angle from
a lower value to a higher value. On the other hand, initially, values of the phase
velocity decrease sharply but finally remain constant for the second mode and for both
angles. If we compare first and second modes, we find that the values of phase velocity
corresponding to the second mode are higher than those of the first mode. A similar
trend is noticed for the case of ID, except that the values of the phase velocity increase
at first and then remain constant for the first mode and for & = 30°. The values of
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Fig. 3 Variations of attenuation coefficient with respect to wave number (symmetric)

the phase velocity for the case of the first mode for TID are larger in comparison to
ID with the wave number, and as the wave number increases, the reverse behavior
occurs, whereas for the cases of TID and TI, we find that there is a larger increase
for the values of TID in comparison to TI. Thus, an appreciable diffusion effect as
compared to an anisotropy effect is noticed. Figure 2 shows similar behavior for the
skew-symmetric mode, but the magnitudes are different as compared to the symmetric
mode.

The corresponding attenuation coefficients are shown in Figs.3 and 4. The values
of the attenuation coefficient increase for all three cases of TI, ID, and TID. The values
of the attenuation coefficient for TID are larger in comparison to TI and ID. As the
angle increases from 6 = 15° to 8 = 30°, there is a large increase in the values of the
attenuation coefficient.

10.2 Amplitudes

The variations of amplitudes of displacements (u1, u3), temperature change (7'), and
concentration (C) with respect to the thickness (H) of the layer have been computed
and are shown in Figs.5, 6, 7, 8, 9, 10, 11 and 12 for different angles. The solid and
dashed lines correspond to TID for & = 15° and 6 = 30°, respectively. The star and
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Fig. 4 Variations of attenuation coefficient with respect to wave number (skew-symmetric)

circle symbols on these two lines correspond to ID. Similarly, the triangle and square
symbols on these lines correspond to TI.

Figure 5 depicts that the values of the amplitude of the horizontal displacement
(u1) decrease monotonically for TID, and the decrease is less as the angle moves from
6 = 15° to & = 30°. On the contrary, the displacement () increases monotonically
for the case of ID and the increase is larger as the angle is varied from a higher
value to a lower value. Corresponding to TID and TI, we notice that the displacement
(u1) decreases for both cases but the decrease in the values is larger for the case of
TID compared to TI. Similarly, for the skew-symmetric mode, the displacement (u1)
decreases for TID but the decrease in the values is larger with the variation of the
angle from 0 = 15° to & = 30°, in contrary to the symmetric mode. On the other
hand, u; increases for the case of ID and the increase is less as the angle moves from
6 = 15° to 8 = 30°. For the cases of TID and TI, the trend is similar as for the case
of the symmetric mode. The values of the amplitude of the vertical displacement (3)
are oscillatory in nature. The displacement (u3) vibrates more for TID than for the
cases of ID and TI. The values of the amplitude of the vertical displacement (u3) are
multiplied by 10° to depict anisotropy and diffusion effects.

In Fig.9, the values of the temperature change (7) increase monotonically corre-
sponding to TID and decrease monotonically corresponding to ID for the symmet-
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Fig. 5 Variations of amplitude of horizontal surface displacement with respect to thickness of layer H
(symmetric)

ric mode; but for the skew-symmetric mode, the temperature change (7') decreases
monotonically in both cases. The values of the temperature change (7') are magnified
by 103 for the case of TI. A similar trend is noticed corresponding to TID and TI, but
for skew-symmetric mode, a decrease in the temperature change (7) is larger than for
the case of TID as compared to TI.

Figure 11 shows that for the case of TID, the values of concentration (C) increase
sharply for & = 15° and decreases slowly for &6 = 30°. On the other hand, the
concentration (C) increases for the case of ID for both angles. A similar trend is shown
in Fig. 12 corresponding to the case of ID. For the case of TID, the concentration (C)
decreases for both angles up to a certain limit but after that, it increases for § = 30°.

11 Conclusions

The propagation of plane harmonic thermoelastic diffusive waves in a homogeneous,
transversely isotropic, thin elastic layer of finite width is studied, in the context of
the coupled theory of thermoelastic diffusion. It is shown that there are three quasi-
longitudinal waves, namely, QED-mode, QMD-mode, and QTD-mode, in addition to
the two quasi-transverse waves (QSV-mode and QSH-mode). The quasi-transverse
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Fig. 12 Variations of amplitude of concentration with respect to thickness of layer H (skew-symmetric)

waves (QSH-mode), which are not affected by thermal and diffusion vibrations, get
decoupled from the rest of the motion of wave propagation. Some special cases of
the frequency equation are also discussed. Anisotropy and diffusion effects on the
phase velocity, attenuation coefficient, and amplitudes of wave propagation are shown
graphically, and the results are compared with existing results.

It is shown that the values of the phase velocity for the second mode show a larger
increase than those of the first mode, and the values increase with an increase in angle.
Due to anisotropy and diffusion effects, the increase in the values of the phase velocity
and attenuation coefficient is smaller. Appreciable diffusion and anisotropy effects on
amplitudes are observed.

Appendix A

Coefficients of Eq.36

_fisi+ fgr— f383 —ri87

_ 182+ f284— [385+T186— 1687171811
e ’

frgi

A* , B*
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C*

_ Jiga+ fogs — 389 + 11810 — 16811477813 D* — f1gs —r1812 +reg13
e ’ f8

g1 = fols —rsly, g2 = f5l3+ folo —rals —rol7 +r18ls, g3 = f3l3 — 1382,

g4 = fsla + feli — rals + rolg,

g5 = f3la —ralo+r3j1 —roj2, 86 = f3ls — felo + rs s,

871 = foj2 — f3l1, gs = fsli,

go = fali —rals +roj1, g0 = f3la — f5lo — fels + 193,

g = fale + fsj2 — fej1 +r2js,

g2 = fsls, g13=fsji. fi=£E22 =), fr=81E% f3 =&,

fo=iEs, fs=E@Gis" =D,

fo = 8ac?, fr = 1Ep1, fs =1Epr, 11 =Ewsy, 1 =Ewlpl, 13 =E5T —

ry = p3E’, rs=—0g,

re = q{Es, 1 =1g3E%s,  rs =1q3E%, ro = 1qiE%st, hy = qiEs’,

hy = qi€, hy=—qiks> +1c, hy=—qit,

ly = r3hs —rshy, lp = hary +rq4h3 — hors, I3 =r4hg, 1y = frh3 — fghy,
Is = frha — hafs, lo = firs — fsr3,

b1 =rafs, I3 = fa(hs —hy), lo=(hg— h2)fs,

J1=fars —r3), jp=rafs, j3= fa(fs— f1).

Appendix B

Coupling Constants of Eqs. 37-40

Iy = rohy —rgrs, L = feha — fsrs, I3 = fors — fsra, Iy =rah3 —rsro,
Is = feh3 + fsha — faro,
Is = rers—rih3, 17 = fer1—fars, Is = hora—rgr3—rora, lo = foha— frs,
Lio = fers + fsra + fira,
Ly =rahy —ror3, Iia = feh1 + fsha — fire, Lz =rers — hiry,
g1a = f3li —ril7,  g15 = f3la — rils — rel7 + rile,
g6 = falz —rila+rele, g17 = f3l —rila+rils,
g8 = fala —rils +rels +rirsfs, g9 = fsle,
820 =ralz7, g2 = f3lzg —rilo +r7lo + re fora,
gn = f3li —rili+relio +r7fsrs, g3 = fshs,
mf,gm + mi’,gls +mpgi6 m;‘,gw + mf,gls + 819

nl = — . n2 =
P mSg+migr+migat+gy’ T

mS g1 +mjg +m3gs+gs’
mggzo + m}‘,gm + m%,gzz + 823
mg& + mﬁ,gz + m%,g4 + 83

n3, = , p=1,2,34.

3

s
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Appendix C

Amplitudes of Eqs.52-55

A _ Ap _ Az _ Ay _ B
Det(/)  Det(II) Det(III)  Det(IV) Det(V)
B B; By

" Det(VI) Det(VII)  DeW(VIII)’
cp =cosémpxz, Sp,=sinémpxz, p=1234

dik = Cc1mpsp —Ccmsy, dék = cymsz3s3 —c3misy, d_;,k = C1M4yS4 — C4m181,

di = com3s3 — camasy,
ds = comysy —camasy, di = c3mass —cam3zs3, di = cimisy —comasi,
d3 = cim1s3 — camssy,
d; = C1M 1854 — C4M4S1, diko = Cpm>»83 — C3M3S72, dikl = CpM284 — C4MN4872,
diy = c3m3sa — camass,

*

hi = mimacic25354(Pan13 — P3nyg)(n21ni2 — niingo),

h3 = mym3cic3sas4(Panig — Paniz)(noiniz — nazniy),
*

h3 = mimycicas2s3(P3n12 — Pangz)(n2inig — noaniy),
*

hy = mam3cac3s154(Panyy — Ping)(noonz — niangg),
*

hs = mamgycacasis3(Pin1z — P3np)(nenis — naang2),

hg = m3mac3cas1s2(Panyy — Ping2)(naznis — nagnis),

hy = —mimasisaczca(Pani3 — Panig)(nainia — niinag),
h; = —mm3s153¢2¢4(Panig — Paniz)(no1nyz — naznyy),
hg = —mymysisscac3(Psniy — Panyz)(nainig — noaniy),
1o = —mam3saszcica(Panyy — Pinia)(noni3 — nianag),

*
11 = —mamasasscic3(Pinyz — P3nyp)(noonis — nognyo),

12 = —m3mys3sscica(Paniy — Pinio)(np3nig — nagnis),

Di = hy+hy +h3+hy+h5+hg, D5 = hy +hg + hg + hig + hi) +hT.
Det(I) = —8D7 pr&®[n13niansnmasadi —nianianazmss3di+nioniznaamasadyl,
Det(ll) = —8Dj p2£Sniznianaimysidi —niinianasmsssdi +niini3naamasad;],

Det(Ill) = —8D} p2£°nioniangimys1di—nyiniananmosadi+nyinionaamasady],

Det(IV) = —8Dj§ p2&®lniznianaimisidi —n1iniznaamasydi +nianiinpzmssydy],

Det(V) = —8D3 pr&Snizniansnmocady, — nipnianyzmscsdy
+nini3naamacadsy],

Det(VI) = —8Dj pr&®[niznianaimicidiy—niinianazmscsds
+niini3naamacadg |,
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Det(VII) = —8D} pr£°(nianianaimycidiy—niinianypmocody
+nyinianagmacyds],

Det(VIII) = —8Dj pr£°Iniznionaimicidiy—niiniznamocads
+nioniinazmsacds].
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